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Abstract

In this work, the problem of convective stability of electrochemical system (a horizontal electrode and a solution containing three
types of ions) under the non-steady-state mass-transfer conditions is solved. A set of equations involving the Navier–Stokes equation
for incompressible viscous liquid to the Boussinesq approximation, the ion-transfer equations that account for diffusion, migration,
and convection, and the electroneutrality condition were used as the mathematical model. The problem is solved within the framework
of linear theory of stability. The set of amplitude equations obtained for vertical component of hydrodynamic velocity and concentra-
tions was solved numerically by the shooting method. As a result, the critical Rayleigh number, the wave number, and the critical time of
onset of natural convection were determined. It is shown that the supporting electrolyte has a strong effect on the convective stability of
the system.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Natural convection of electrolyte, which arises in the
electrochemical systems due to the variations in the electro-
lyte density, has a pronounced effect on the electrode reac-
tion rate [1,2]. In the case of horizontal electrodes, natural
convection of electrolyte arises only at the Rayleigh num-
bers Ra higher than a certain critical value Rac. The deter-
mination of Rac involves a study of stability of stagnant
electrolyte under the steady-state mass-transfer conditions.
In real systems, stability of stagnant electrolyte is disturbed
before the steady-state distribution of concentrations is
reached. Therefore, in recent years, non-steady-state con-
vective instability has been studied. In this case, instability
arises when the diffusion layers exist near each of electrodes
and the distribution of concentrations of ions in the inter-
electrode space has a complex, non-linear character. This
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijheatmasstransfer.2006.11.007

* Corresponding author. Tel.: +8 4872 352452; fax: +8 4872 331305.
E-mail address: volgin@uic.tula.ru (V.M. Volgin).
significantly complicates the theoretical analysis of the pro-
cess. In this case, convective instability is characterized by a
critical time tc, i.e. a period of time from the beginning of
experiment (for example, from the instant of imposing a
voltage between the electrodes) to the onset of convection.
The critical time can be determined by the analysis of
stability of interrelated equations of liquid motion and
ion-transfer equations. In [3–8] the problem of stability of
stagnant fluid under the non-steady-state heat-transfer con-
ditions was studied. The results of these studies can be used
directly for the electrochemical systems with a binary elec-
trolyte. In the multi-component electrochemical systems
(with three or more types of ions), the distribution of elec-
trolyte density over the diffusion layers depends both on
electroactive and supporting electrolyte; this prevents the
use of results, which were obtained for heat systems. The
natural convection in the multi-component systems with
horizontal electrodes was studied experimentally in several
works [9–11]. Recently, the effect of stable thermal stratifi-
cation on the onset of double-diffusive convection in the
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Nomenclature

a parameter
A parameter, Ra2=3

c

cm concentration of ions of mth type
C1 dimensionless concentration of electroactive

ions, c1

2c1b

C4 dimensionless concentration of fictitious ions,
z3c4

2ac1b
ðz3�z2Þ

oq
oc2bCm modified dimensionless small disturbance of

concentration of ions of mth type, eCm=Ra
Dm diffusion coefficient of ions of mth type
D4 diffusion coefficient of supporting electrolyte,

D2D3ðz3�z2Þ
z3D3�z2D2

D* mutual diffusion coefficient, D1

D2

n2

n1
D1�

h
D3ðz3�z2ÞþðD3�D2Þz1

z3D3�z2D2
D2 � n2�n1

n1
D4

i
D4 dimensionless diffusion coefficient of supporting

electrolyte, D4

D1

D� dimensionless mutual diffusion coefficient,
z3D�

aD1ðz3�z2Þ
oq
oc2

F Faraday number
g gravitational acceleration

Gr Grashof number,
2gH3c1b

a

qbm2

H distance between electrodes
kX, kY projections of wave vector onto the coordinate

axis X and Y, respectively

k wave number,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

X þ k2
Y

q
�k modified wave number, k

ffiffiffiffiffiffiffiffiffiffiffi
s=Sc1

p
Mm designation of ions of mth type
n number of electrons exchanged in the electrode

reaction, (z1n1 � z2n2)
nm stoichiometric coefficient of ions of mth type
p pressure
P dimensionless pressure, H2

qbmD1
p

R gas constant
Ra1 Rayleigh number of electroactive ion, Sc1 � Gr

Ra Rayleigh number of electrolyte with three types
of ions, b

2 Ra1

Ra modified Rayleigh number of electrolyte with
three types of ions, Ra � (s/Sc1)3/2

Sc1 Schmidt number, m
D1

S1(B) amplitude of small perturbation of concentra-
tion of electroactive ions

S4(B) amplitude of small perturbation of concentra-
tion of fictitious ions

WZ(B) amplitude of small perturbation of vertical com-
ponent of hydrodynamic velocity

t time
s dimensionless time, m

H2 t
T temperature
v hydrodynamic velocity
V dimensionless hydrodynamic velocity, H

D1
v

x,y,z axial, spanwise and normal coordinate
X,Y,Z dimensionless axial, spanwise and normal coor-

dinate, x
H ;

y
H ;

z
H

zm charge number of ions of mth type

Greek symbols
a densification coefficient of electrolyte with three

types of ions, oq
oc1
þ z1�z3n2D1=n1D2

z3�z2

oq
oc2

b dimensionless parameter, 1þ
ffiffiffiffi
D4

p

1þ
ffiffiffiffi
D4

p
þD�

D2 two-dimensional Laplacian, o2

oX 2 þ o2

oY 2

e relative concentration of electroactive ions,
c1b

c3b
/ electric potential
c unity vector directed vertically downwards
m kinematic viscosity of electrolyte
q density of electrolyte
oq
ocm

densification coefficient of ions of mth type
B self-similar variable, (Sc1/s)1/2Z

Subscripts

b bulk state
c critical conditions

Overbars

— undisturbed state
� small disturbance

ˆ modified small disturbance
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electrochemical systems has been studied theoretically by
Kim et al. [12]; however, the migration of supporting elec-
trolyte ions has been ignored.
2. Formulation of the problem

Within the framework of the Boussinesq approximation,
the theory of dilute electrolytes, and under the assumption
of electroneutrality, equations of flow of incompressible
viscous liquid and the ion transfer in the electrolyte layer
between two horizontal electrodes can be written as follows
[1,2,13,14]:
ov

ot
þ ðv � rÞv ¼ � 1

qb

rp þ mDvþ cg
qb

ðq� qbÞ;

divðvÞ ¼ 0;

oc1

ot
¼ D1Dc1 þ

Fz1D1

RT
ðrc1ruþ c1DuÞ � vrc1;

oc2

ot
¼ D2Dc2 þ

Fz2D2

RT
ðrc2ruþ c2DuÞ � vrc2;

oc3

ot
¼ D3Dc3 þ

Fz3D3

RT
ðrc3ruþ c3DuÞ � vrc3;

z1c1 þ z2c2 þ z3c3 ¼ 0:

ð1Þ
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For a solution containing three types of ions, which is
obtained of two source substances (for example CuSO4

and H2SO4), the electrolyte density can be expressed in
terms of concentrations of two types of ions, because the
concentration of ions of the third type is uniquely deter-
mined by the electroneutrality condition. For the sake of
definiteness, assume that the electrolyte density is expressed
as follows:

q� qb ¼
oq
oc1

ðc1 � c1b
Þ þ oq

oc2

ðc2 � c2b
Þ: ð2Þ

Assume that the following reaction proceeds on the
electrodes:

n1Mz1
1 þ ne$ n2Mz2

2 þ an1M1; ð3Þ

Eq. (3) describes both redox reactions (a = 0, n2 6¼ 0)
and the reactions of cathodic deposition (anodic dissolu-
tion) of metal (a = 1, n1 = 1, n2 = 0). In some cases, the
reduction (for example, of [Fe(CN6]3+) proceeds at
the cathode and the oxidation of [Fe(CN6]2+) proceeds at
the anode; in other cases, metal (copper, for example)
cations discharge on the cathode and form on the anode.

For the limiting-current mode, the boundary conditions
for set of Eq. (1) are as follows:

vjz¼0;z¼H ¼ 0

c1jz¼0 ¼ 0; c1jz¼H ¼ 2c1b

n2D1

oc1

oz
þ Fz1c1

RT
ou
oz

� �
¼ �n1D2

oc2

oz
þ Fz2c2

RT
ou
oz

� �� �����
z¼0;z¼H

oc3

oz
þ Fz3c3

RT
ou
oz

� �����
z¼0;z¼H

¼ 0: ð4Þ

Assume that the concentration of indifferent electrolyte
considerably exceeds the concentration of electroactive
electrolyte, i.e. the following condition is fulfilled

e ¼ c1b

c3b

� 1: ð5Þ

We will estimate the relative diffusion and migration
terms in the equations of ionic transfer and the correspond-
ing boundary conditions at e� 1 . We denote the differ-
ence in the concentration of the first electrolyte
component between the cathode and the anode by dc1 �
ec3b

. From the electroneutrality condition, the estimates
for the concentration differences for the second and the
third types of ions are as follows:

dc2 � dc1 � ec3b
;

dc3 � dc1 � ec3b
:

ð6Þ

Thus, for all electrolyte components, the relative diffu-
sion terms are identical and proportional to e. To estimate
the derivatives of electric potential, we use the equation of
electric charge conservation:
X3

m¼1

zmDmDcm þru
X3

m¼1

Fz2
mDm

RT
rcm þ Du

X3

m¼1

Fz2
mDmcm

RT
¼ 0;

ð7Þ

which is a consequence of equations of ion transfer (1) and
the electroneutrality condition. Taking into account thatP3

m¼1zmDmDcm�ec3b
;
P3

m¼1
Fz2

mDm

RT rcm�ec3b
;
P3

m¼1
Fz2

mDmcm

RT �c3b

and D/ � $/, we obtain the following estimates: D/ � e,
$/ � e.

To the linear in small parameter e approximation, sys-
tem of Eq. (1) takes the form:

ov

ot
þ ðv � rÞv¼� 1

qb

rpþ mDvþ cg
qb

oq
oc1

ðc1 � c1b
Þ þ oq

oc2

ðc2 � c2b
Þ

� �
;

divðvÞ ¼ 0;

oc1

ot
¼ D1Dc1 � vrc1;

oc2

ot
¼ D2Dc2 þ

Fz2D2c2b

RT
Du� vrc2;

oc3

ot
¼ D3Dc3 þ

Fz3D3c3b

RT
Du� vrc3;

z1c1 þ z2c2 þ z3c3 ¼ 0:

ð8Þ

Based on these estimates, the equations for ion fluxes at
the electrodes (the third and the fourth equations in (4))
can be presented as follows:

n2D1

oc1

oz
¼ �n1D2

oc2

oz
þ Fz2c2b

RT
ou
oz

� �� �����
z¼0;z¼H

oc3

oz
þ Fz3c3b

RT
ou
oz

� �����
z¼0;z¼H

¼ 0:

ð9Þ

As a result of the presence of migration terms in set (8)
and boundary conditions (9), the ion transfer equations are
non-linear and coupled and, hence, difficult to solve. From
boundary conditions (9) and the electroneutrality condi-
tion, to the linear in small parameter e approximation, it
follows:

o

oz
n2D1

n1D2

c1 þ c2 þ c3

� �����
z¼0;z¼H

¼ 0: ð10Þ

Introducing a new variable

c4 ¼
n2D1

n1D2

c1 þ c2 þ c3 ð11Þ

and expressing concentrations c2 and c3 in terms of c1 and
c4

c2 ¼
z3

z3 � z2

c4 þ
z1 � z3n2D1=n1D2

z3 � z2

c1;

c3 ¼ �
z2

z3 � z2

c4 �
z1 � z2n2D1=n1D2

z3 � z2

c1

ð12Þ
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set of Eq. (8) and boundary conditions (4), (9) can be pre-
sented in the following dimensionless form:

oV

os
þ 1

Sc1

ðV �rÞV¼�rP þDVþ cRa1ðC1� 0:5þC4�C4b
Þ

divðVÞ ¼ 0

Sc1

oC1

os
¼DC1�VrC1

Sc1

oC4

os
¼D4DC4�VrC4þD�DC1

ð13Þ

VjZ¼0;Z¼1 ¼ 0

C1jZ¼0 ¼ 0;C1jZ¼1 ¼ 1

oC4

oZ

����
Z¼0;Z¼1

¼ 0:

ð14Þ

To investigate the stability of undisturbed state, that is,
a solution of system (13) for stagnant electrolyte, the per-
turbations of dependent variables are introduced

C1 ¼ C1 þ eC1; C4 ¼ C4 þ eC4; V ¼ eV; P ¼ P þ eP :
ð15Þ

To the linear approximation, the equations for disturbed
electrolyte motion are

oeV
os
¼ �reP þ DeV þ cRa1ðeC1 þ eC4Þ

divðeVÞ ¼ 0

Sc1

oeC1

os
¼ DeC1 � eV Z

oC1

oZ

Sc1
oeC4

os
¼ D4DeC4 � eV Z

oC4

oZ
þ D�DeC1:

ð16Þ

After double application of curl operator to the first
equation of set (16), this set can be reduced to three equa-

tions in functions eC1; eC4; eV Z

oDeV Z

os
¼ D2 eV Z � Ra1ðD2

eC1 þ D2
eC4Þ

Sc1

oeC1

os
¼ DeC1 � eV Z

oC1

oZ

Sc1

oeC4

os
¼ D4DeC4 � eV Z

oC4

oZ
þ D�DeC1:

ð17Þ

The conditions and the critical time of onset of con-
vection can be determined by solving the perturbation
Eq. (17). Solution of set of Eq. (17) depends on the solution
of undisturbed problem, which should be found prelimi-
nary.

3. Solution of stability problem

In the absence of convection, the distribution of concen-
tration depends solely on the vertical coordinate Z. This
allows to write the equations of undisturbed state in the
following form:
Sc1

oC1

os
¼ o2C1

oZ2
; Sc1

oC4

os
¼ D4

o2C4

oZ2
þ D�

o2C1

oZ2
: ð18Þ

If the critical time of onset of natural convection is sig-
nificantly shorter than the characteristic time of transient
process in the stagnant electrolyte, the solution of the set
(18) corresponding to the limiting rate of cathodic reaction
(3) near the cathode surface can be written as follows:

C1ðZ; sÞ ¼
1

2
� 1ffiffiffi

p
p

Z 1

Z
2

ffiffiffiffi
Sc1
s

p e�u2

du ð19Þ

C4ðZ; sÞ ¼ C4b
þD�½C1ðZ; sÞ � 0:5�

1�D4

þ D�ffiffiffi
p
p
ð1�D4Þ

Z 1

Z
2

ffiffiffiffi
Sc1
s

p e
�u2

D4 du:

ð20Þ

The set of equations of disturbed motion (17) involves
the derivatives oC1=oZ and oC4=oZ, which can be readily
determined from Eqs. (19) and (20):

oC1

oZ
¼ 1

2

ffiffiffiffiffiffiffi
Sc1

ps

r
e�

Sc1Z2

4s ;
oC4

oZ
¼ D�

2ð1�D4Þ

ffiffiffiffiffiffiffi
Sc1

ps

r
e�

Sc1Z2

4s � e
�Sc1Z2

4D4s

 !
:

ð21Þ

Taking into account the solution of undisturbed prob-
lem, set of equations for perturbations (17) will take the
following form

oDeV Z

os
¼ D2 eV Z � bðD2

bC1 þ D2
bC4Þ

Sc1
obC1

os
¼ DbC1 � Ra

ffiffiffiffiffiffiffi
Sc1

ps

r
e�

Sc1Z2

4s eV Z

Sc1

obC4

os
¼ D4DbC4 þ D�DbC1 �

RaD�

1� D4

�
ffiffiffiffiffiffiffi
Sc1

ps

r
e�

Sc1Z2

4s � e
�Sc1Z2

4D4s

 !eV Z :

ð22Þ

For convenience of comparison with known solutions of
stability problem for stagnant liquid under the non-steady-
state heat-transfer conditions, where a step change in tem-
perature only of one horizontal plate is considered, the
Rayleigh number Ra is defined by the difference between
the electrolyte densities of bulk solution and solution adja-
cent to cathode.

Assuming that the perturbations of concentrations and
vertical component of hydrodynamic velocity can be pre-
sented as follows [8]:

bC1 ¼ S1ð1ÞeiðkX XþkY Y Þ;bC4 ¼ S4ð1ÞeiðkX XþkY Y Þ;eV Z ¼ s=Sc1 � W Zð1ÞeiðkX XþkY Y Þ:

ð23Þ

Taking into account (23) set (22) can be reduced to three
ordinary differential equations in functions WZ(B), S1(B),
and S4(B):
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ðD2 � �k2Þ2W Z ¼ ��k2bðS1 þ S4Þ �
1

Sc1

1
2
D3 � 1

2
�k2Dþ �k2

� 	
W Z

ðD2 � �k2ÞS1 ¼ �
1
2
DS1 þ Ra

W Zffiffiffi
p
p e�

12

4

D4ðD2 � �k2ÞS4 þD�ðD2 � �k2ÞS1

¼ � 1
2
DS4 þ Ra

W Zffiffiffi
p
p D�

ð1�D4Þ
e�

12

4 � e
� 12

4D4

� �
ð24Þ

where D = o/oB.
The boundary conditions for set of Eq. (24) can be

presented as follows:

W Zð0Þ ¼ 0; DW Zð0Þ ¼ 0; S1ð0Þ ¼ 0; DS4ð0Þ ¼ 0

W Zð1maxÞ ¼ 0; DW Zð1maxÞ ¼ 0; S1ð1maxÞ ¼ 0; DS4ð1maxÞ¼ 0:

ð25Þ

To solve set (24), the shooting method is used. Calcula-
tions were performed on the uniform grid; the computa-
tional region dimension Bmax was taken such that the
effect of finite dimension on the calculated data was elimi-
nated. In the numerical solution, the boundary eigenvalue
problem for set of Eq. (24) was reduced to the Cauchy
problem for a set of ordinary differential equations of the
first order.

Set of linear Eq. (24) is homogeneous; therefore, one
boundary condition can be prescribed arbitrarily. This
enables one to determine the unknown parameter Ra. It
was assumed that

D2W Zð0Þ ¼ 2: ð26Þ

At a given �k, preliminary magnitudes of D3WZ (0),
DS1(0), S4(0), and Ra were prescribed. Integrating set of
Eq. (24) using the Runge–Kytta method of the fourth-
order accuracy, WZ(Bmax), DWZ(Bmax), S1(Bmax), DS4(Bmax)
were determined. In general case, they do not satisfy
boundary conditions (25). The preliminary magnitudes of
variables at B = 0 were refined using the Newton method
from the discrepancy magnitude for boundary conditions
prescribed at B = Bmax. Then �k was changed in order to
determine the critical Rayleigh number Rac ¼ min�kRað�kÞ,
which corresponds to the onset of convective instability.
The critical time of onset of non-steady-state convective
instability can be determined by equation

sc ¼ ASc1Ra�2=3

tc ¼
AH 2

m
Sc1Ra�2=3:

ð27Þ
Fig. 1. The effect of D* on the distribution of Dq in the stagnant
electrolyte.
4. Results and discussion

For an electrolyte with three types of ions, under condi-
tion (5), when the migration transfer of electroactive com-
ponent can be ignored, set of equations for the amplitudes
of perturbations (24) contains four dimensionless parame-
ters: Ra; Sc1; D4; D�, i.e. the critical Rayleigh number,
which is determined by the change in the electrolyte density
between the bulk and the cathode,

Dq ¼ c1b

1þ
ffiffiffiffiffiffi
D4

p
þ D�

1þ
ffiffiffiffiffiffi
D4

p oq
oc1

þ z1 � z3n2D1=n1D2

z3 � z2

oq
oc2

� �
;

ð28Þ

is a function of three parameters Sc1; D4; D�. At high
Schmidt numbers, the dependence of Ra on Sc1 can be
ignored. Thus, the critical Ra corresponding to the onset
of instability depends on two dimensionless parameters
D� and D4.

As follows from set of Eq. (24), at D� ¼ 0, the last equa-
tion of the system admits only zero solution, that is the
supporting electrolyte has no effect on the critical Rayleigh
number. In this case, set of Eq. (24) reduces to a set in
the perturbations of vertical component of hydrodynamic
velocity and concentration of electroactive component

ðD2 � �k2Þ2W Z ¼ ��k2S1 �
1

Sc1

1
2
D3 � 1

2
�k2Dþ �k2

� 	
W Z

ðD2 � �k2ÞS1 ¼ �
1
2
DS1 þ Ra

W Z

2
ffiffiffi
p
p e�

12

4 :

ð29Þ

Eq. (29) are similar to the corresponding equations for
a binary electrolyte with the Schmidt number Sc1 and the
densification coefficient a. Set of Eq. (29) coincides with
equations for heat convection [8]. Numerical solving of
set of Eq. (29) yielded the results coinciding with the data
of [8].

First, the effect of the system parameters D� and D4 on
the undisturbed distributions of concentration and density
in the diffusion layer growing with time was studied. As is
seen from the results (Fig. 1), under certain conditions
(provided that D� > 0Þ, the distribution of density becomes
non-monotonic due to the migration of supporting electro-
lyte; this will have an effect on the stability of electrolyte
with three types of ions. Figs. 2 and 3 give the calculated
critical Rayleigh numbers and the critical wave numbers
at various magnitudes of system parameters. At a constant



Fig. 2. Plots of critical Rayleigh number vs. the diffusion coefficient D�

at various D4.

Fig. 3. Plots of critical wave number vs. the diffusion coefficient D�

at various D4.

Fig. 4. The distribution of amplitudes of perturbations of (a) concentra-
tion and (b) vertical component of velocity and its derivatives at D4 ¼ 2
and D� ¼ �0:175.
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D4, the dependence of critical Rayleigh number on D� is
described by the non-monotonic function with a local max-
imum. The maximum critical Rayleigh number is higher
than the corresponding value for a binary electrolyte. How-
ever, an increase in stability is observed only in a small
range of D�. To the right of the maximum (with an increase
in D�) Rac decreases rather slowly, whereas to the left of the
maximum (with a decrease in D�) the system stability stee-
ply decreases up to Rac ¼0. In the vicinity of the extremum
of RacðD�Þ curve, the critical wave number decreases
sharply.

At D4 ¼ 2, the maximum Rac ¼ 21:02 is reached at
D� ¼ �0:175. An increased stability of electrolyte with
three types of ions at these magnitudes of parameters is
caused by the fact that at small D� the amplitude of concen-
tration perturbations S4 is small; near the electrode, pertur-
bations S1 and S4 are of the same sign slightly increasing
stability, whereas, at a certain distance from the electrode,
sign of perturbation S4 is changed enhancing stability
(Fig. 4). The sizes of zones, where perturbation amplitude
S4 has opposite signs, are approximately equal; therefore,
a zone, which is farther from the electrode surface, has a
stronger effect on stability; as a result, the system stability
somewhat increases. With an increase in D�, the distribu-
tion of perturbation amplitude S4 changes (Fig. 5): a zone,
in which the perturbations of electroactive component con-
centration are partially compensated, shifts to the electrode
surface and its size decreases, whereas a zone, in which per-
turbations S1 and S4 are of the same sign, is at a certain dis-
tance from the electrode, and the perturbation amplitude
S4 in this zone is rather large. This reduces the system sta-
bility. To the left of the maximum, with a decrease in D�,
a zone, where perturbations S1 and S4 are of the same sign
is retained; this zone increases with decreasing D�, while
a zone, where S1 and S4 are of opposite sign, gradually
decreases (Fig. 6). As a result, the system stability decreases
rapidly. At negative D�, the distribution of variation in the
density is non-monotonic; this also reduces stability.

The effect of migration on the stability of electrolyte
containing three types of ions involves the variation in
the density of stagnant solution near the electrodes due
to the migration of supporting electrolyte and the perturba-
tions of concentrations of supporting electrolyte ions. In



Fig. 5. The distribution of amplitudes of perturbations of (a) concentra-
tion and (b) vertical component of velocity and its derivatives at D4 ¼ 2
and D� ¼ 1.

Fig. 6. The distribution of amplitudes of perturbations of (a) concentra-
tion and (b) vertical component of velocity and its derivatives at D4 ¼ 2
and D� ¼ �2.
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the absence of migration, the solution density drop
between the bulk and the cathode is

Dq ¼ c1b

oq
oc1

� n2D1

n1D2

oq
oc2

� �
: ð30Þ

Introducing the Rayleigh number eRa, which is deter-
mined by the density drop (30), the net effect of migration
on the stability can be presented using coefficient Kmig,
which is the ratio between the critical Rayleigh numbers
in the presence and in the absence of migration. For a
binary electrolyte, the critical Rayleigh number is 20.67.
Then, taking into account (30), we obtain:
Table 1
Parameters of electrochemical systems with three types of ions and critical Ra

System 109 � D1

(m2 s�1)
109 � D2

(m2 s�1)
109 � D3

(m2 s�1)
oq/oc1

(kg mol�1)

KI + I2 0.917 1.96 1.98 0.287
CuSO4 þH2SO4

ðCu2þ; Hþ; SO2�
4 Þ

0.750 9.00 1.00 0.156

CuSO4 þH2SO4

ðCu2þ; Hþ; HSO�4 Þ
0.750 9.00 1.90 0.156

AgNO3 + HNO3 1.600 9.00 1.90 0.135
K3Fe(CN)6 + K4Fe(CN)6 0.740 0.890 1.96 0.226
Kmig ¼
eRac

20:67
¼ Rac

20:67a
oq
oc1

� n2D1

n1D2

oq
oc2

� �
: ð31Þ

The method was used to determine the stability of four
systems containing three types of ions: KI + I2, CuSO4 +
H2SO4, AgNO3 + HNO3, and K3Fe(CN)6 + K4Fe(CN)6.
Table 1 lists the parameters (taken from handbooks
[15,16]) and the critical Rayleigh numbers for these sys-
tems. Only in the AgNO3 + HNO3 solutions the system
stability is higher than that of a binary electrolyte; in all
other cases under consideration, it is lower. For system
CuSO4 + H2SO4 two limiting cases were considered: com-
yleigh numbers

oq/oc2

(kg mol�1)
Sc1 D4 D� �kc Rac Kmig

0.1210 1091 2.15 �0.687 0.717 18.20 0.73
0.0335 1333 3.27 �0.242 0.595 20.05 1.13

0.0335 1333 4.18 �0.179 0.571 20.06 1.09

0.0340 625 1.96 �0.094 0.567 20.99 1.16
0.167 1351 2.04 0.108 0.496 20.19 3.50



Fig. 7. Comparison of calculated and experimental undershoot times for
the electrochemical systems with three types of ions: (a) CuSO4–H2SO4

and (b) KI–I2.
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plete dissociation yielding SO2�
4 ions an incomplete dissoci-

ation yielding HSO�4 ions (Table 1). The calculated under-
shoot times

su ¼ 4
sc

Sc1

; ð32Þ

corresponding to the minimum of the Sherwood number
[8] agree well with the experimental data for CuSO4 +
H2SO4 and KI + I2 systems (Fig. 7).

5. Conclusions

The problem of convective instability of electrochemical
system containing three types of ions with an excess of sup-
porting electrolyte and redox reaction or anodic dissolution
(cathodic deposition) proceeding on the electrodes in the
limiting-current mode under non-steady-state mass-transfer
conditions is solved. It is found that the critical Rayleigh
number and the critical time depend on the coefficients of
electrolyte density and the diffusion coefficients of ions.
Non-monotonic variation of electrolyte density in the diffu-
sion layer near the electrode surface due to the migration
of supporting electrolyte raise convective instability and
decreases the critical time of onset of natural convection.
The proposed method of determination of critical time
takes into account the character of variation of density in
multi-component electrochemical systems and enables to
obtain tc, which agree well with the experimental data.
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